
How to scrape dynamic web
apps using Ruby

Piotr Jaworski
Kraków- KRUG, 21.01.2020

About me

Senior Ruby Developer @ Bionic Business, London, UK

www: https://piotrjaworski.pl
github: https://github.com/piotrjaworski
linkedin: https://www.linkedin.com/in/jaworskipiotr/

https://piotrjaworski.pl
https://github.com/piotrjaworski
https://www.linkedin.com/in/jaworskipiotr/

Is anyone familiar with web scraping or web
crawlers?

What will I cover in this talk?

This talk will cover some basic examples - how can we
scrape web apps using different libraries written in
Ruby.
Also, how can we categorize web apps and what should
we remember when we design web scrapers.

What is web scraping?

What is web scraping?

Web scraping (also known as web harvesting) is a data scraping
used for extracting data and context from web pages.
It can be done manually by a user or automatically by a
software (called a bot or a web crawler).
The whole process is based on parsing HTML code and
interacting with HTML elements.

How can we divide web scraping?

How can we divide web scraping?
Web scraping

Web parsing Web interaction

What is web parsing?

Web parsing

Web parsing is a part of web scraping. It allows us to
process and read the HTML code of a web page.
Thanks to that, we can search for elements on a web
page and extract from them a content, text.
Web parsing doesn’t mean interaction with webpages.

What is web interaction?

Web interaction

Web interaction is an interaction with elements on a
web page, like clicking on links, filling forms, etc.

To interact with web pages, we need an instance of a
browser (it could also be headless).

When is web-scraping useful?

When is web-scraping is useful?

In most cases we use web scrapers when:
- any kind of data is not accessible via API,
- we want to automate any kind of process,
- we want to write a bot (remember to change IP address, use a

proxy),
- we want to check if anything has been changed on a page,
- we want to test a front-end part of our web app.

https://proxymesh.com/
https://proxymesh.com/

How can we categorize web apps?

Web apps categories
Web apps

Static web pages Dynamic web apps

Static web pages

Static web pages

What is a static web page (in web scraping)?
It’s a page where the whole content is loaded once, there are no elements
which are loaded in a background, asynchronous.

For example, https://krug.org.pl/ is a static web page.

https://krug.org.pl/

Static web pages

How to scrape them?
It’s quite easy, we just need to get an HTML code from a web page and
parse it. We can do it even using net/http library:

require 'net/http'
source_code = Net::HTTP.get(URI('https://krug.org.pl'))
/our_regex/.match(source_code)

But it’s not a thing to parse HTML code
manually, using regular expressions...

Static web pages

Which libraries (written in Ruby) can be used to
scrape static web pages?
- Nokogiri gem - https://github.com/sparklemotion/nokogiri
- Mechanize gem - https://github.com/sparklemotion/mechanize

https://github.com/sparklemotion/nokogiri
https://github.com/sparklemotion/mechanize

Nokogiri

Nokogiri

Nokogiri is an HTML and XML parser.
It parses and searches XML/HTML using native libraries (either C or Java,
depending on your Ruby version), which means it's fast and standards-compliant.

It can be also used to build XML/HTML documents.

Nokogiri can’t be used to interact with webpages, it means that we can’t click on
an element or fill a form with it.

Nokogiri - HTML web page parse example

require 'nokogiri'
require 'open-uri'
webpage = Nokogiri::HTML(open('http://www.nokogiri.org/tutorials/installing_nokogiri.html'))
Search for nodes by css
webpage.css('nav ul.menu li a').each do |link|
 puts link.content
end
Search for nodes by xpath
webpage.xpath('//nav//ul//li/a').each do |link|
 puts link.content
end

Mechanize

Mechanize

The Mechanize library is used to automate interaction with websites.
Mechanize automatically stores and sends cookies, follows redirects, and
can follow links and submit forms.
It also keeps track of the sites that you have visited as a history.

Moreover, mechanize has already included nokogiri gem, so we can even
parse web pages with it.

Mechanize - HTML web page interaction example

require 'mechanize'
browser = Mechanize.new { |agent| agent.user_agent_alias = 'Mac Safari' }
browser.get('http://google.com/') do |page|
 search_result = page.form_with(id: 'tsf') do |search|
 search.q = 'krug'
 end.submit

 search_result.links.each do |link|
 puts link.text
 end
end

Dynamic web apps

Dynamic web apps

What is a dynamic web app (in web scraping)?
It’s an app where the whole content is not loaded once, there are
elements which are loaded in a background, asynchronous.

For example, https://facebook.com is a dynamic web app.

https://facebook.com

What are the main problems during web
scraping of dynamic web apps?

What are the main problem during web scraping dynamic web apps?

On dynamic web apps, a lot of content is loaded async.
It means that we need to monitor for all the changes or
elements which we want to parse.
Also, some content may not be clickable - for example, a modal
window covers part of a web page or an element does not
persist on a page anymore.

Which tools can be used to scrape dynamic web
apps?

Which tools can be used to scrape dynamic web apps?

Watir - https://github.com/watir/watir

An open-source Ruby library designed for automating tests - but it can be
also used to write web scrapers.
Watir interacts with a browser in the same way people do: clicking links,
filling out forms and validating text.
Moreover, it is powered by Selenium.

https://github.com/watir/watir

Watir - supported browsers

Which browsers does Watir support?
It’s pretty cool because Watir supports most popular browsers like:

- Chrome
- Safari
- Firefox
- Microsoft Edge (not fully supported yet)
- .. and even Microsoft Explorer!
- also can be run in a headless mode (for example with chrome-driver)

Watir - main features

Main features:
- Waiting (for example, you can wait for N seconds for an element)
- Headless (you can run a browser without a monitor, or even in a background job processor)
- Basic browser authentication
- Browser alerts
- Browser downloads
- Cookies
- Screenshots
- Sending special keys (cmd + c etc.)
- Proxies
- Execute JavaScript code
- and much more...

Watir - example

require 'watir'
browser = Watir::Browser.new(:chrome)
browser.goto('https://google.com')
search_input = browser.text_field(class: 'gLFyf gsfi')
search_input.set('krug')
browser.form(id: 'tsf').submit

result = browser.div(class: 'rc', index: 2)
puts result.text

browser.close

Of course, it’s just a really simple example.

Watir - JavaScript execution

We can really easy execute JavaScript code in a browser:
require 'watir'
browser = Watir::Browser.new(:chrome)
browser.goto('https://google.com')

browser.execute_script('alert("ok");')

browser.close

Watir - the headless mode

The headless mode does not require any screen, so you can run your code
even in a background processor, like Sidekiq.
browser_flags = %w(ignore-certificate-errors disable-popup-blocking disable-translate disable-notifications start-maximized disable-gpu headless)
browser_options ||= begin
 selenium_options = Selenium::WebDriver::Chrome::Options.new
 browser_flags.each do |flag|
 selenium_options.add_argument(flag)
 end
 selenium_options
end

browser = Watir::Browser.new(:chrome, options: browser_options)

Watir - Heroku support

If you want to run Watir on Heroku, you need to specify a Chrome driver
path and add a buildpack:
browser_options ||= begin
 selenium_options = Selenium::WebDriver::Chrome::Options.new
 # it requires the buildpack - https://github.com/jormon/minimal-chrome-on-heroku.git
 if chrome_bin = ENV['GOOGLE_CHROME_BIN']
 selenium_options.add_argument('no-sandbox')
 selenium_options.binary = chrome_bin
 Selenium::WebDriver::Chrome.driver_path = '/app/vendor/bundle/bin/chromedriver'
 end
 ...
 selenium_options
end

Of course, you can also use Watir to scrape
static web pages!

It depends what do you want to achieve and how
big is your/your company’s budget :)

Remember to find the right balance!

Web scraping - article

Some time ago (almost 3 years ago), I wrote an article which describes
how to write a web scraper.
It scrapes Facebook and automatically likes the specified page and invites
a friend.

You can read it here:
https://bit.ly/3avB10P

https://bit.ly/3avB10P

Thank you! Q&A time.

